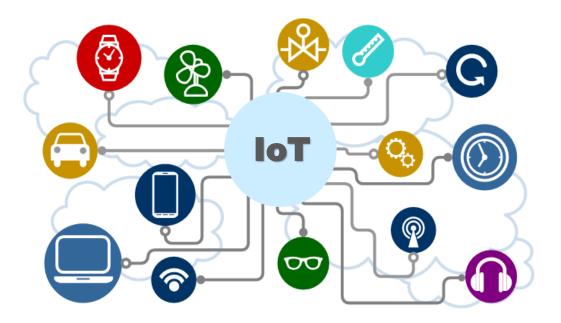


UNIVERSITÀ DI PARMA Dipartimento di Ingegneria e Architettura

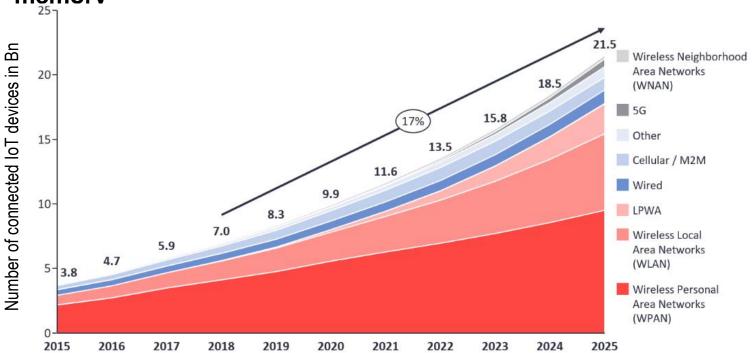
IoT Security

Luca Veltri

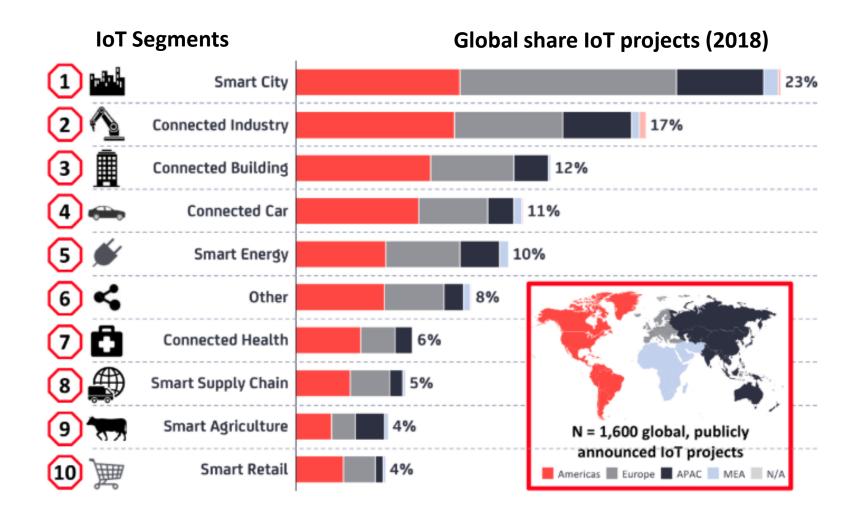
(mail.to: luca.veltri@unipr.it)


http://netsec.unipr.it

Cyber Security - Parma 14/11/2019


Internet of Things

- Internet of Things (IoT)
 - > interconnects billions of heterogeneous devices/smart objects
 - enabling new forms of interaction between physical objects and people
 - > used in practically every field


Internet of Things (cont.)

- Smart objects
 - typically equipped with a radio interface, sensors, actuators, electronics and software
 - collect and exchange data connecting to each other
 - limited computational power, energy sources, and available memory

Source: IoT-Analytics: https://www.statista.com/statistics/666864/iot-spending-by-vertical-worldwide

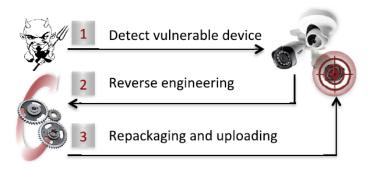
Internet of Things (cont.)

Internet of Things (cont.)

 What are the most significant barriers limiting your adoption of loT solutions? (Forbes 2018)

Security in IoT

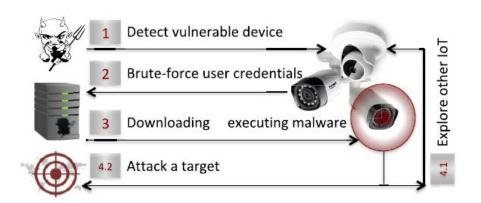
- Very important requirement due to:
 - > the type of information that is exchanged/stored
 - > the type of services that are implemented


- Securing IoT is particularly complicated by:
 - (possible) limited computational power
 - > (possible) limited memory capabilities
 - > (possible) limited communication resources
 - > (possible) limited battery-powered
 - > (possible) limited user interface
 - closed devices
 - > heterogeneity
 - high distributed architectures
 - > very low maturity

Threat layers

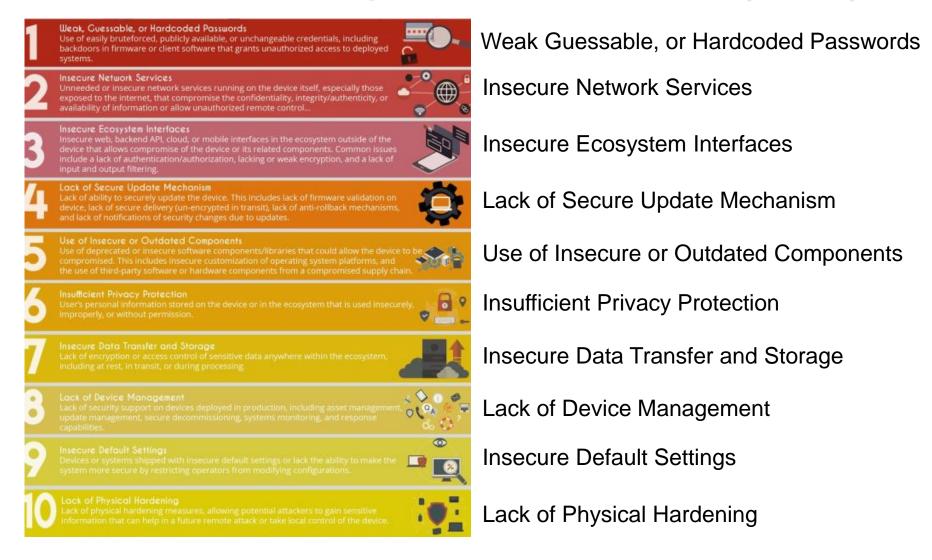
- Threats can be based on:
 - physical access
 - if IoT devices operate in an unattended fashion with no or limited tamper resistance policies and methodologies
 - > network
 - Internet and IoT-specific vulnerabilities caused by network or protocol weaknesses
 - > software
 - attackers can gain remote access to smart IoT nodes by exploiting software vulnerabilities

IoT vulnerabilities


- Deficient physical security
 - the majority of IoT devices operate autonomously in unattended environments
 - with little effort, an adversary might obtain unauthorized physical access to such devices and thus take control over them

- Insufficient energy harvesting or limited computational power or communication resources
 - > an attacker might drain the stored energy by generating flood of legitimate or corrupted messages, rendering the devices unavailable for valid processes or users

IoT vulnerabilities (cont.)


- Improper encryption
 - resource limitations of the IoT affects the robustness, efficiency and efficacy of such algorithms
- Inadequate authentication and access control
 - > when the keys are not being stored or transmitted securely, sophisticated (or otherwise effective) authentication algorithms become insufficient
 - strong credential management should be required to protect devices and data from unauthorized access

IoT vulnerabilities (cont.)

- Week programming
 - firmware are often released with known vulnerabilities (including backdoors, root users as prime access points) and lack of data encryption usage
- Improper configuration
 - Various IoT devices have unnecessarily open ports while running vulnerable services
 - permitting an attacker to connect and exploit a plethora of vulnerabilities
- Improper patch management capabilities
 - ➤ IoT operating systems and embedded firmware/software should be patched appropriately to continuously minimize attack vectors
 - abundant cases report that many manufacturers either do not recurrently maintain security patches or do not have in place automated patch-update mechanisms, or done in an insecure way
- Insufficient audit mechanisms
 - > a plethora of IoT devices lack thorough logging procedures, rendering it possible to conceal IoT-generated malicious activities

OWASP IoT Top 10 Vulnerabilities (2018)

Source: Open Web Application Security Project: https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

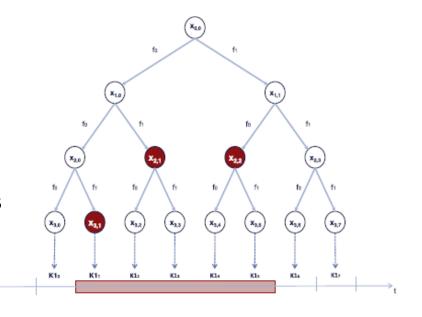
Countermeasures

- Countermeasures against physical threats:
 - > when possible, protect smart objects in safe places
 - > safe supplying and installation measures
 - avoiding untrusted manufacturers and installers
- Countermeasures against networked threats:
 - > secure communication protocols and cryptographic algorithms
 - to enforce proper security services
 - peer authentication/authorization, data protection (authentication/integrity, confidentiality), anonymity
 - using proper cryptographic tools
 - (lightweight?) symmetric block ciphers, hash functions, asymmetric cryptography
 - avoid security function duplication
 - impact on the power computation and transmission performance
 - preserve interoperability
 - > robust authentication and key management
 - security bootstrapping
 - a solid key management infrastructure
 - more complicated in IoT scenarios than in standard Internet

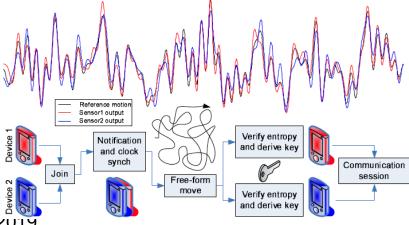
Countermeasures (cont.)

- Countermeasures against network and software threats:
 - > Vulnerability Assessment
 - executing security evaluations undoubtedly aids in discovering IoT vulnerabilities prior to them being exploited
 - > Honeypots
 - already proposed some IoT-specific honeypots
 - > Intrusion Detection
 - ML-based NIDS

Our IoT Security research projects


EU Project Calipso (2011-2014)

- Focus on Internet Protocol (IP)-connected smart object networks,
 with novel methods to attain very low power consumption
- Partners
 - ➤ Thales, CNRS @Grenoble, Swedish Institute of Computer Science, University of Parma, Disney Research Zurich, Worldsensing (ES), CISCO
- IETF/IPv6 framework (6LoWPAN, RPL, CoAP)
- Platform for developments: Contiki
- Three applications/testbeds:
 - > Smart Infrastructures
 - > Smart Cities/Parking
 - > Smart Toys



Key management

- Group key distribution
 - group key
 - users join/leave
 - KDC-based group key distribution
 - > per-slot keys
 - no re-keying when a user leaves
 - > collusion resistant

- Martini-synch key exchange
 - > exploits closeness
 - inertial data

Resource

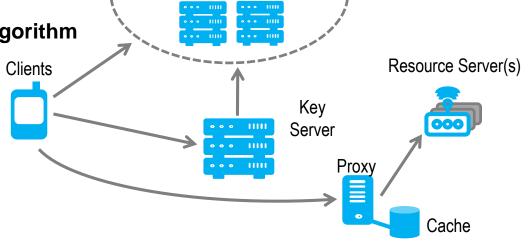
Owner

Register
Smart Contract Spo

IoT and Blockchain

- With Univ. Grenoble Alpes, CNRS France
- IoTChain: Use of blockchain for fully distributed authentication and authorization

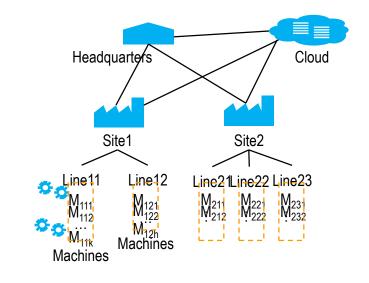
key-based authorization

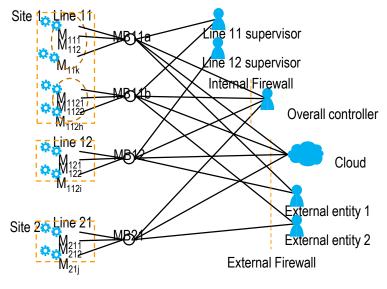

distributed authentication/authorization based on blockchain

use of smart contracts

proper key distribution algorithm

- Implementation
 - Ethereum
 - CoAP
 - > mobile UA

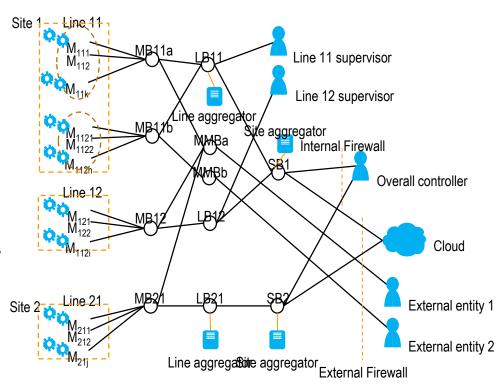




Blockchain

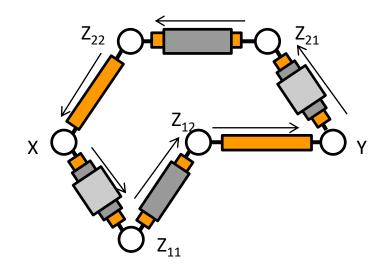
Secure Pub/Sub-based Industrial IoT

- IIoT scenario:
 - company with one or more production sites and a headquarter
 - each site may include one or more production lines formed of different machines
 - PLCs, SCADAs and distributed sensing systems, formed by IoT devices and organized as WSN
 - they are interconnected to per-line and per-site remote controllers
 - they may also be interconnected to the headquarter site and/or to an external Cloud system to enable cross-site monitoring and control
- From the security point of view, complex and non-scalable architecture
 - due to the high number of M2M interactions that has to be separately

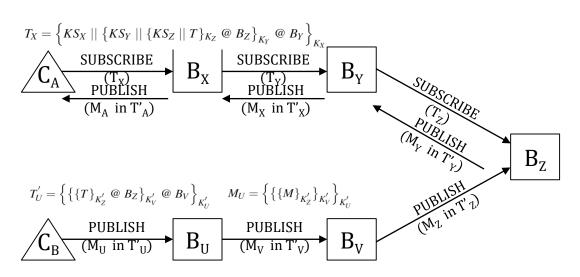


Secure Pub/Sub-based Industrial IoT (cont.)

- MQTT-based multi-stage
 IIoT architecture
 - multi-level of brokers according to different access classes

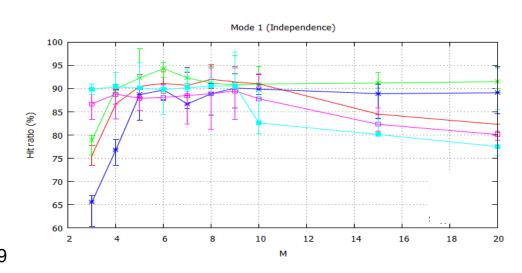

Advantages:

- simplification of client-to-broker relations for the authentication and authorization
- simplification NAT and firewall configurations
- scalability in terms of total number of flows
- simplification of new data processing functions, fully integrated with the multistage pub/sub architecture



Anonymity

- New anonymity mechanisms
 - > new requirements
- Network level
 - Datagram-based Onion Routing
 - > different paths can be considered
 - per-message routing

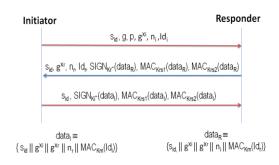

- Application level
 - > Publish-Subscribe
 - > MQTT

Other security-related projects

Blind traffic classification and IDS

- Classical traffic classification methods
 - Session-based: well known port matching, session behaviour modelling, etc.
 - > Content-based: protocol inspection, signature matching, etc.
- New constraint-based statistical method
 - fine-grained (specific application), supervised, probabilistic
 - maximum likelihood strategy
 - > session packets characterized by size, time,and sqn
- ML analysis/learning
- Anomaly-based NIDS

VoIP/IM Security


- Vulnerabilities
 - weak protocols
 - E2E security
- UA to UA security
 - end-to-end authentication and confidentiality
 - end-to-end authentication and key agreement
 - symmetric key through authenticated DH
 - the DH key authenticated using a short authentication string and side-channel
 - e.g. voice
- Development activity
 - mjSIP open-source project
 - TLS, SRTP, ZRTP, etc.
 - http://www.mjsip.org

Quantum security projects

- Team
 - Michele Amoretti (PhD, associate professor)
 - Davide Ferrari (PhD student)
- Topics
 - > high performance computing (classical and quantum)
 - > quantum compiling
 - quantum networking

- Quantum security projects:
 - > quantum anonymity
 - https://github.com/qis-unipr/qsip-practical-anonimity
 - > entanglement verification
 - https://github.com/qis-unipr/entanglement-verification

Thank you!

Luca Veltri

mail.to: luca.veltri@unipr.it

http://netsec.unipr.it